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Abstract

It is demonstrated that a class of generalized Dupin cyclides arises naturally
out of a classical system of equilibrium equations for shell membranes. This
class consists of all families of parallel canal surfaces on which the lines of
curvature are planar. Various examples of viable membrane geometries such
as particular L-minimal surfaces are presented.

PACS numbers: 02.30.Ik, 02.40.Hw, 46.70.De

1. Introduction

The geometric analysis of shell membranes which are in equilibrium constitutes an intrinsic
part of the theory of thin shells and has a long history (see, e.g., [1] and references therein).
However, only recently has it been shown [2] that the classical equilibrium equations associated
with a large class of shell membranes are, in fact, integrable and therefore amenable to the
tools of modern soliton theory [3, 4]. The latter connection has been used in [5] to investigate
shell membranes which admit non-unique stress distributions. As a result, a connection with
the classical Lamé equation [6] has been revealed.

The classification of surfaces which possess one or two families of planar lines of curvature
has likewise been a subject of interest for more than a century (see, e.g., [7–10]). It is therefore
natural to examine shell membranes which assume the shape of Enneper surfaces [11], that is
surfaces on which there exists one family of planar lines of curvature. Here, we are concerned
with the particular case of shell membranes on which all lines of curvature are planar. It turns
out that this geometric problem is closely related to the above-mentioned physical problem of
the existence of non-unique stress distributions and may indeed be addressed by means of the
techniques developed in [5].
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The analysis of shell membranes of Enneper type is shown to lead to a class of surfaces
which one may term ‘generalized Dupin cyclides’. Dupin cyclides are surfaces on which all
lines of curvature constitute circles [10]. Classical Dupin cyclides not only arise in differential
geometry but also in both computer-aided design and in soliton theory. Thus, substantial
accounts of the application of Dupin cyclides in solid modelling may be found in [12, 13]. Of
recent work one may cite inter alia [14] which contains an extensive literature on the subject
and [15, 16] on supercyclides.

On the other hand, Dupin cyclides arise in soliton theory as particular ‘soliton surfaces’
(see, e.g., [17]). Indeed, they are embedded in a more general class of integrable surfaces,
namely isothermic surfaces (see [4] and references therein). Thus, classical solitonic equations
such as the sine-Gordon, Korteweg–de Vries and nonlinear Schrödinger equations arise in a
natural manner out of the Gauss–Mainardi–Codazzi equations for special soliton surfaces
which admit invariance under Bäcklund transformations [4, 18]. This invariance generically
induces a nonlinear superposition principle for the soliton equation whereby, on iterative
application, multi-solitons may be generated. In the classical literature on the geometry of
surfaces, such nonlinear superposition principles are known as permutability theorems and
originate in the work of Bianchi [19] on pseudospherical surfaces. If a Bäcklund transformation
is known for a class of surfaces � then a Bäcklund transformation is naturally induced for the
class of parallel surfaces.

Interestingly, parallel Dupin cyclide configurations arise naturally in liquid crystal and
shell membrane equilibrium states. Thus, in now classical experiments by Friedel [20], it
was observed that smectic A liquid crystals can adopt geometric configurations comprised of
parallel layers of Dupin cyclides. Indeed, even the confocal conics associated with such Dupin
cyclides are manifest in such experiments. The geometric aspects of Friedel’s pioneering
work were elaborated upon by Bragg [21]. Subsequently, Kléman [22] proposed a theoretical
liquid crystal model based on the classical Love equations of elastic membrane theory [23].
Remarkably, this nonlinear liquid crystal model system has been shown to admit parallel
cyclide geometries consistent with Friedel’s original empirical observations [24]. A particular
reduction of the Kléman model delivers a classical shell membrane system as set down in [1]
and it is this system with which we are concerned.

2. The shell membrane equilibrium equations: offset membranes

Here, we consider the classical equilibrium equations of a shell membrane � : r = r(α, β)

parametrized in terms of curvature coordinates α, β. Hence, its first and second fundamental
forms I = dr · dr, II = −dN · dr are given by

I = A2
1 dα2 + A2

2 dβ2, II = κ1A
2
1 dα2 + κ2A

2
2 dβ2, (1)

where N is the unit normal and κ1, κ2 denote the principal curvatures. The Gauss–Mainardi–
Codazzi equations adopt the form

κ2α + (ln A2)α(κ2 − κ1) = 0,

κ1β + (ln A1)β(κ1 − κ2) = 0, (2)

(
A2α

A1

)
α

+

(
A1β

A2

)
β

+ κ1κ2A1A2 = 0,

2
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while the classical shell membrane equilibrium equations, in the absence of in-plane shear
(with respect to lines of curvature), reduce to [1]

T1α + (ln A2)α(T1 − T2) = 0,

T2β + (ln A1)β(T2 − T1) = 0,

κ1T1 + κ2T2 + Z = 0,

(3)

where T1 and T2 are the relevant stress resultants and Z is the non-vanishing constant normal
loading. It is observed that the assumption of vanishing in-plane shear is equivalent to the
requirement that the lines of principal stress on the shell membranes coincide with the lines of
curvature. The latter assumption is of significance in, for instance, liquid crystal theory and
the theory of biological membranes (see [24, 25] and references therein). In the following, it
is understood that the term ‘membrane’ incorporates the above-mentioned assumptions.

In terms of the variables

p = A1β

A2
, H = A1, H0 = −κ1A1, H̃ = A1T2,

q = A2α

A1
, K = A2, K0 = −κ2A2, K̃ = A2T1,

(4)

the governing equations (2) and (3) adopt the compact form

Hβ = pK, Kα = qH, pβ + qα + H0K0 = 0 (5)

together with the algebraic equation

HT�K = 0, (6)

where

H =
⎛
⎝H0

H

H̃

⎞
⎠ , K =

⎛
⎝K0

K

K̃

⎞
⎠ , � =

⎛
⎝0 0 1

0 −Z 0
1 0 0

⎞
⎠ . (7)

It is readily verified that this system is invariant under the linear transformation

(H K) �→
⎛
⎝ 1 0 0

b 1 0
1
2b2Z bZ 1

⎞
⎠ (H K), (8)

where b ∈ R is a real parameter. The Gauss–Mainardi–Codazzi equations (2) guarantee that
the Gauss–Weingarten equations⎛
⎝X

Y

N

⎞
⎠

α

=
⎛
⎝ 0 −p −H0

p 0 0
H0 0 0

⎞
⎠

⎛
⎝X

Y

N

⎞
⎠ ,

⎛
⎝X

Y

N

⎞
⎠

β

=
⎛
⎝ 0 q 0

−q 0 −K0

0 K0 0

⎞
⎠

⎛
⎝X

Y

N

⎞
⎠ (9)

for the unit tangent vectors X,Y and the normal N to the membrane are compatible. The
position vector r to the membrane is then obtained via the pair

rα = HX, rβ = KY . (10)

At the surface level, the transformation (8) induces the invariance

r �→ r + bN (11)

corresponding to the transition from a membrane � to a parallel (offset) membrane �‖ at
distance b.

3
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3. Geometric constraints

The equilibrium equations (3) provide three linear conditions on the two stress resultants
T1, T2. Thus, the system is over-determined and is compatible only for privileged (families
of parallel) shell geometries. In this connection, elimination via differentiation of Z from the
membrane system (2) and (3) yields

T1β = −[
ln

(
A1κ

2
1

)]
β
T1 +

κ2

κ1

[
ln

(
A1

κ2

)]
β

T2,

T2α = κ1

κ2

[
ln

(
A2

κ1

)]
α

T1 − [
ln

(
A2κ

2
2

)]
α
T2.

(12)

The compatibility conditions Tiαβ = Tiβα, i = 1, 2 on the equilibrium equations (3) are now
readily seen to reduce to the single constraint

μ̄T1 + ν̄T2 = 0, (13)

where

μ̄ = κ1

([
ln

(
A1κ1

A2κ2

)]
αβ

+ ϒ

)
, ν̄ = −κ2

([
ln

(
A1κ1

A2κ2

)]
αβ

− ϒ

)
(14)

and

ϒ = [ln(κ1κ2)]αβ + (ln A1)β(ln κ1)α + (ln A2)α(ln κ2)β − (ln κ1)α(ln κ2)β . (15)

3.1. L-isothermic membranes

It is evident that, for any admissible membrane geometry, the stress components are uniquely
determined by the linear system (3)3, (13) unless μ̄ = ν̄ = 0 in which case there exists
a one-parameter family of stress distributions. The latter case is represented by the single
requirement that[

ln

(
A1κ1

A2κ2

)]
αβ

= 0 (16)

since the constraint (13) then reduces to (κ1T1 + κ2T2)ϒ = 0 and hence

ϒ = 0 (17)

by virtue of (3)3 with Z �= 0. Remarkably, the geometric condition (16) is well known
in Laguerre geometry and constitutes a defining property of L-isothermic surfaces [26–28].
Thus, we obtain the following theorem.

Theorem 1. L-isothermic membranes admit a one-parameter family of associated stress
distributions.

Geometrically, an L-isothermic surface may be defined by the requirement that its third
fundamental form (spherical representation)

III = dN · dN = H 2
0 dα2 + K2

0 dβ2 (18)

of the surface be conformally flat in terms of appropriately scaled curvature coordinates.
Indeed, condition (16) shows that the lines of curvature may be parametrized in such a way
that

H0 = K0 = eθ (19)

4
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and hence the third fundamental form of the membrane adopts the form

III = e2θ (dα2 + dβ2). (20)

The Gauss–Mainardi–Codazzi equations then reduce to

A2α = θαA1, A1β = θβA2, θαα + θββ + e2θ = 0, (21)

where p = θβ, q = θα . In terms of the quantities

P = A1 − A2, R = A1 + A2, (22)

the Mainardi–Codazzi equations (21)1,2 may be cast in the form

(e−θR)α = e−2θ (eθP )α, (e−θR)β = −e−2θ (eθP )β, (23)

whence the compatibility condition for R yields

e−θPαβ = P(e−θ )αβ . (24)

Finally, it may be shown that condition (17) is equivalent to [5]

(P 2)αβ = 0 (25)

so that P 2 is of the separable form

P 2 = f (α) + g(β). (26)

3.2. Shell membranes of Enneper type

The membrane equations in the case μ̄ = ν̄ = 0 have been analysed in detail in [5]. In
particular, it has been shown that it is consistent to assume that P depends on one variable
only. Here, we demonstrate that the corresponding class of membranes admits a simple
geometric interpretation. To this end, it is recalled that the delineation of surfaces on which
there exists a family of planar lines of curvature constitutes a classical problem of differential
geometry. A special subclass of Enneper surfaces [11] is obtained by demanding that all lines
of curvature are planar. Since the torsion of a space curve r = r(s) is given by [10]

τ = |r′, r′′, r′′′|
|r′ × r′′|2 , (27)

it is readily verified that the conditions for the torsion of the lines of curvature on a surface �

to vanish read

pH0α = pαH0, qK0β = qβK0. (28)

Here, we have made use of the Gauss–Weingarten equations (9) of a generic surface
parametrized in terms of curvature coordinates α, β. The Gauss–Mainardi–Codazzi equations
in the form (5), that is

H0β = pK0, K0α = qH0, pβ + qα + H0K0 = 0, (29)

then imply that[
ln

(
H0

K0

)]
αβ

= 0. (30)

Accordingly, the surface � is L-isothermic with

H0 = K0 = eθ (31)

without loss of generality and the Gauss–Mainardi–Codazzi equations subject to the constraints
(28) reduce to the pair

θαα + θββ + e2θ = 0, (e−θ )αβ = 0 (32)

5



J. Phys. A: Math. Theor. 42 (2009) 404016 W K Schief et al

with p = θβ, q = θα . Cross-differentiation shows that the constraint (32)2 on the Liouville
equation (32)1 is compatible. Theorem 1 therefore implies the following result.

Theorem 2. Membranes on which the lines of curvature (and therefore the lines of principal
stress) are planar admit a one-parameter family of associated stress distributions.

As stated in the above theorem, the assumption of planar lines of curvature on the
membranes considered here implies that μ̄ = ν̄ = 0. Accordingly, ϒ = 0 or, equivalently,
(P 2)αβ = 0. By virtue of the compatibility condition (24), the constraint (32)2 shows that
Pαβ = 0 so that

PαPβ = 0. (33)

Now, differentiation of the expressions κ1 = −H0/H , κ2 = −K0/K and comparison with the
relations

Hβ = θβK, Kα = θαH (34)

(cf (5)) lead to the equivalence

κ1ακ2β = 0 ⇔ (Hα − θαH)(Kβ − θβK) = 0 ⇔ PαPβ = 0, (35)

where it is recalled that P = H − K . Since the condition κ1ακ2β = 0 is a defining property
of canal surfaces [29, 30], we obtain the following characterization of membranes with planar
lines of curvature:

Theorem 3. The class of membranes on which the lines of curvature (and therefore the lines
of principal stress) are planar consists of all canal surfaces with planar lines of curvature.
The corresponding fundamental forms parametrized by H,K and H0,K0 are obtained via
integration of the constrained Liouville equation

θαα + θββ = −e2θ , (e−θ )αβ = 0 (36)

and the compatible Mainardi–Codazzi equations

(e−θR)α = e−2θ (eθP )α, PαPβ = 0, (e−θR)β = −e−2θ (eθP )β (37)

with H0 = K0 = eθ and P = H − K,R = H + K .

Canal surfaces are defined as the envelopes of one-parameter families of spheres of, in
general, arbitrary radii and constitute particular Enneper surfaces. Indeed, without loss of
generality, canal surfaces are encoded in the constraint κ2β = 0 and it may be shown that
the corresponding lines of curvature α = const constitute circles. If, in addition, κ1α = 0
then both families of lines of curvature consist of circles and the class of classical Dupin
cyclides is obtained [10]. The subclass of canal surfaces defined by the property that all lines
of curvature be planar evidently subsumes Dupin cyclides and we therefore refer to these
surfaces as generalized Dupin cyclides.

4. Generalized Dupin cyclides

In terms of the variable e−θ , the solutions of the pair (36) represent separable solutions of
the elliptic Liouville equation and may be obtained in a straightforward manner. However, it
turns out to be convenient to adopt a linearization procedure which has been developed in [5]
in connection with the general case μ̄ = ν̄ = 0. Thus, the following theorem may be directly
verified:

6
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Theorem 4. The general solution of the constrained Liouville equation (36) is given by

e−θ = 1
2 (|�1|2 + |�2|2), (38)

where �1(z) and �2(z) are two solutions of the linear equation

�zz + C� = 0, z = α + iβ (39)

subject to the Wronskian condition

�1�
′
2 − �′

1�2 = 1. (40)

Here, C constitutes an arbitrary real constant.

Specialization to the case of generalized Dupin cyclides of the corresponding theorem set
down in [5, theorem 3, p 12] then leads to the following statement.

Theorem 5. Any solution set {�1,�2} as provided by theorem 4 corresponds to a family of
parallel membranes with position vector

r = e−θλαX + e−θλβY + (λ + b)N , (41)

where λ is given by

λ = 2T0

|�1|2 + |�2|2 , (42)

and T0 is any particular real solution of the inhomogeneous extension

Tzz + CT = P

4
(43)

of the linear equation (39) with PαPβ = 0. Here, b is the (real) foliation parameter and the
orthonormal frame (X,Y ,N ) is determined by

X + iY = 1

|�1|2 + |�2|2

⎛
⎜⎝

�2
2 − �2

1

i
(
�2

1 + �2
2

)
2�1�2

⎞
⎟⎠ ,

N = − 1

|�1|2 + |�2|2

⎛
⎜⎝

�1�̄2 + �̄1�2

i(�̄1�2 − �1�̄2)

|�1|2 − |�2|2

⎞
⎟⎠ .

(44)

4.1. The position vector

Here, we determine the position vector of membranes of generalized Dupin cyclide type in
terms of quadratures. Without loss of generality, it may be assumed that P = P(α) and hence
κ2β = 0. In the case C = k2 > 0, the inhomogeneous linear equation (43) becomes

Tzz + k2T = P

4
(45)

with particular solution T0 = T0(α) given by

T0 = 1

2k

(
sin(2kα)

∫
P(α) cos(2kα) dα − cos(2kα)

∫
P(α) sin(2kα) dα

)
, (46)

while the general solution of (39) is a linear combination of

φ1 = 1√
k

cos(kz), φ2 = 1√
k

sin(kz).

7
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Without loss of generality, we proceed with the one-parameter family of solutions

�1 = e−ωφ1, �2 = eωφ2, (47)

where ω is a real parameter. By construction, the Wronskian condition (40) is satisfied. On
introduction of the scalings

2kα �→ α, 2kβ �→ β, P �→ 2kP, (48)

the position vector to the membranes for ω �= 0 is given by, up to a rotation,

r = −c0F1 + b

a0 cosh β − c0 cos α

⎛
⎜⎝

1
c0

cosh β

sin α

sinh β

⎞
⎟⎠ +

⎛
⎜⎝

− a0
c0

b

F2

0

⎞
⎟⎠ , (49)

where

F1(α) =
∫

P(α) sin αdα, F2(α) =
∫

P(α) cos αdα (50)

and

a0 = cosh 2ω, c0 = sinh 2ω. (51)

It is noted that a complete generalized Dupin cyclide is obtained by specifying F1, F2, c0, b

and smoothly matching the two surfaces corresponding to (c0, b) and −(c0, b) at the common
boundary given by r(α, β → ±∞).

In the case ω = 0, the position vector to the membranes reads

r = b

cosh β

⎛
⎝ cos α

sin α

sinh β

⎞
⎠ +

⎛
⎝−F1

F2

0

⎞
⎠ . (52)

It will readily be seen (cf (61)) that in this case the generalized Dupin cyclide is a canal surface
generated by a family of spheres of constant radius (tube). It is noted that in the limiting case
C = 0 (obtained by carefully considering the limit k → 0, ω → ∞ in which �1,�2 in (47)
remain finite), the position vector of the generalized Dupin cyclides adopts the form

r = 2
(− ∫

αP (α) dα + b
)

1 + α2 + β2

⎛
⎝1

α

β

⎞
⎠ +

⎛
⎜⎜⎝

−b∫
P(α) dα

0

⎞
⎟⎟⎠ . (53)

4.2. The one-parameter family of spheres

In order to provide a representation which parametrizes the entire membrane, it proves
convenient to introduce a new coordinate u and a new foliation parameter μ according to

u = arccos(sechβ), μ = −b. (54)

Then, the position vector (49) may be brought into the form

r(α, u) = −ψeϕ

⎛
⎜⎝

1
c0

sin α cos u

sin u

⎞
⎟⎠ +

⎛
⎜⎝

a0
c0

μ

F2

0

⎞
⎟⎠ , (55)

where

ψ(α) = c0F1 + μ, e−ϕ = a0 − c0 cos α cos u (56)

8
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and

a2
0 − c2

0 = 1. (57)

Even though u ∈ [0, π ], it is evident that the transition (c0, b) → −(c0, b) is formally achieved
by letting u ∈ [π, 2π ]. Hence, by assuming that u is arbitrary, the complete membrane is
obtained. Accordingly, we may now compare the above position vector with the standard
representation [29, 30]

r(s, v) = γ − rrst + r

√
1 − r2

s (cos vn + sin vb) (58)

of a canal surface, where γ(s) is the curve formed by the centres of the one-parameter family
of spheres of radius r(s) and the orthonormal triad (t,n, b) is the associated Serret–Frenet
frame [10] composed of the unit tangent t to γ, the principal normal n and the binormal b.
Here, s is an arc length parameter of the curve γ and the variable v parametrizes the circular
lines of curvature α = const. It is not difficult to show that, in the present situation, the curve
γ is planar and given by

γ = (−a0F1(α), F2(α), 0)T (59)

with corresponding arc length

s =
∫

P(α)

√
1 + c2

0 sin2 α dα (60)

by virtue of the definitions (50). The radius of the spheres is

r = |c0F1(α) + μ| (61)

and the curvature coordinate v is defined by the compatible pair

sin v = −
√

1 + c2
0 sin2 α sin u

a0 − c0 cos α cos u
, cos v = a0 cos u − c0 cos α

a0 − c0 cos α cos u
. (62)

For completeness, it is noted that the Serret–Frenet frame (t,n, b) associated with γ consists
of

t = 1√
1 + c2

0 sin2 α

⎛
⎝−a0 sin α

cos α

0

⎞
⎠ , n = − 1√

1 + c2
0 sin2 α

⎛
⎝ cos α

a0 sin α

0

⎞
⎠ (63)

and b = (0, 0, 1)T.

4.3. The generating curve

Since a canal surface is uniquely defined by its generating curve and the radius of the associated
one-parameter family of spheres, the canal surfaces considered here may be recovered by
studying the generating curve γ. In fact, any planar (regular) curve

γ(t) = (x(t), y(t), 0)T (64)

and an associated one-parameter family of spheres with radius

r(t) = | tanh(2ω)x(t) − μ|, ω, μ = const (65)

define a canal surface on which the lines of curvature are planar. Indeed, any plane curve
may (locally) be obtained from (59) by a suitable choice of the parameter α and the function
P(α). Specifically, since F1(α) and F2(α) are only defined up to constants of integration, it is
required that

− c0P(α) sin αα̇ = ẋ, P (α) cos αα̇ = ẏ. (66)

9



J. Phys. A: Math. Theor. 42 (2009) 404016 W K Schief et al

Elimination of P then shows that the relation between the parameters α and t is given by

cot α = −a0
ẏ

ẋ
(67)

and hence

P = ±
(
ẋ2 + a2

0 ẏ2
) 3

2

a2
0(ẋÿ − ẍẏ)

, (68)

wherein the sign has to be chosen appropriately.
Various features of the curve (59) may be retrieved from the function P(α). If we assume

that

P(α) = P0 +
N∑

n=2

(an cos(nα) + bn sin(nα)) (69)

(an, bn, P0 ∈ R) then γ constitutes a closed curve since
∫ 2π

0 P(α) sin α dα =∫ 2π

0 P(α) cos α dα = 0 and if P(α) �= 0 then γ does not exhibit any cusps since
F ′

1(α) ∼ F ′
2(α) ∼ P(α). It is noted that this may always be achieved by means of a

suitable choice of the constant P0. For example, the function P(α) = − 3
2 sin 2α generates the

scaled5 astroid γ = (a0 sin3 α, cos3 α)T, α ∈ [0, 2π) with four cusps and no self-intersections.
Alternatively, the sum (69) may be replaced by an infinite series to represent a Fourier
expansion of P(α).

4.4. The stress resultants

Remarkably, the stress resultants associated with the class of membranes considered here may
be obtained without further integration. This is due to the existence of the first integrals

HT�H = I1(α), KT�K = I2(β) (70)

of the equilibrium equations (5)1,2 so that

T1 = − 1

2κ2

(
Z +

I2(β)

A2
2

)
, T2 = − 1

2κ1

(
Z +

I1(α)

A2
1

)
. (71)

The remaining equilibrium equation (6) then reduces to

I1 + I2 + ZP 2 = 0 (72)

and hence

I1(α) = −ZP 2(α) − 2I0, I2(β) = 2I0, (73)

where I0 is a constant of separation parametrizing the one-parameter family of stress
distributions according to

T1 = − Z

2κ2
− I0

κ2A
2
2

, T2 = − Z

2κ1

(
1 − P 2

A2
1

)
+

I0

κ1A
2
1

. (74)

For completeness, it is observed that, in terms of the coordinates (α, u), the geometric quantities
of the membrane (55) are given by

A1 = P − ψ eϕ cos u, A2 = −ψeϕ,

κ1 = cos u

ψ cos u − P e−ϕ
, κ2 = 1

ψ

(75)

with ψ and ϕ defined by (56).

5 In view of the factor a0 in (59), it is more convenient to obtain curves with scaled x-coordinate: these curves are
termed ‘scaled’.
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Figure 1. A family of parallel surfaces for P(α) defined by (79).

5. Particular membranes

In order to illustrate the preceding analysis, we now investigate the geometry of the generalized
Dupin cyclides associated with canonical choices of both the function P(α) and the generating
curve γ.

5.1. Ellipses

Here, we consider the simplest closed generating curve γ, namely the ellipse

x2

w2
1

+
y2

w2
2

= 1, z = 0 (76)

with semi-axes w1 and w2. For any given parameter ω, the radius of the spheres which generate
the family of parallel canal surfaces is given by (61), that is

r = | tanh(2ω)x − μ|. (77)

If P(α) = const then the generating curve

γ = (a0P cos α, P sin α, 0)T (78)

is indeed an ellipse with semi-axes w1 = a0P and w2 = P and eccentricity ε = |c0/a0|.
However, it is evident that the parameter ω is not arbitrary but | tanh(2ω)| = ε. As indicated
in section 3, this choice of P corresponds to the class of classical Dupin cyclides.

In order to obtain the complete family of canal surfaces associated with the ellipse (76),
it is required to make the choice

P(α) = a0w
2
1w

2
2(

w2
1 cos2 α + a2

0w
2
2 sin2 α

) 3
2

(79)

and, in general, the surfaces do not constitute Dupin cyclides. It is noted that the function (79)
may be represented by the series (69) with N → ∞. The details are given in appendix A. A
set of parallel membranes for c0 = 2, w1 = 3, w2 = 4 is depicted in figure 1.

5.2. Talbot’s curve

In the case N = 2, one may set

P(α) = P0 + 3ε cos 2α, P0 = const, ε = const (80)

without loss of generality. The generating curve (59) then becomes Talbot’s curve [31]

γ = (a0(P0 − 2ε + ε cos 2α) cos α, (P0 + 2ε + ε cos 2α) sin α, 0)T. (81)

11
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0
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Figure 2. Talbot’s curve (81) for a0 = √
2, P0 = 2 and different parameters ε.

Figure 3. A family of parallel surfaces for P(α) = 2 + 9 cos 2α.

The curve (81) for a0 = √
2, c0 = 1, P0 = 2 and various values of the parameter ε are shown

in figure 2. Its curvature � is readily shown to be

� = a0

(P0 + 3ε cos 2α)
(
1 + c2

0 sin2 α
) 3

2

(82)

and for |P0| > |3ε| the curve has no cusps. If |P0| < |3ε| then the curve exhibits four cusps.
A family of parallel canal surfaces with Talbot’s curve as the generating curve is shown in
figure 3.

5.3. L-minimal generalized Dupin cyclides

An L-minimal surface [26] may be defined by the requirement that the ratio of the Gaussian
curvature K = κ1κ2 and mean curvature H = (κ1 + κ2)/2 satisfy the Laplace equation

�III

(H
K

)
= 0 (83)

with respect to the third fundamental form (20). Substitution of κ1 and κ2 from (75) into the
latter equation leads to

Pαα + P = 0. (84)

12
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Figure 4. A closed L-minimal generalized Dupin cyclide (87) with c0 = 3
2 .

Hence, P = cos(α − α0) without loss of generality. Consequently, the position vector of
L-minimal generalized Dupin cyclides adopts the form

r = −c0 [2α sin α0 − cos(2α − α0)] + 4μ

4(a0 − c0 cos α cos u)

⎛
⎜⎝

1
c0

sin α cos u

sin u

⎞
⎟⎠+

1

4

⎛
⎜⎝

4a0
c0

μ

2α cos α0 + sin(2α − α0)

0

⎞
⎟⎠.

(85)

Insertion of F1(α) and F2(α) as given by (50) into (59) shows that these canal surfaces are
generated by the scaled cycloid

γ = 1
4 (−a0(2α sin(α0) − cos(2α − α0)), 2α cos(α0) + sin(2α − α0), 0)T. (86)

By construction, the surfaces (85) are both L-isothermic and L-minimal and may also be
obtained from the Weierstrass-type representation proposed in [28] (cf appendix B).

It is interesting to note that there exists a sub-class of closed surfaces even though P(α)

is not of the form (69). Thus, the one-parameter family of closed L-minimal canal surfaces

r = 1

a0 + c0 sin α cos u

⎛
⎝ sin2 α

−a0 sin α cos α

c0 sin2 α sin u

⎞
⎠ +

⎛
⎝0

α

0

⎞
⎠ , α ∈ [0, π ], u ∈ [0, 2π ]

(87)

is obtained from (85) by appropriately shifting α and setting

α0 = 0, μ = −c0

4
. (88)

The Gaussian curvature of these surfaces is given by

K = − 4 cos u

c0 sin3 α(c0 sin α cos u + 2a0)
(89)

and they all exhibit cusps at the points (0, 0, 0) and (0, π, 0). A typical member of this class of
membranes is depicted in figure 4. A set of such surfaces for different values of c0 is displayed
in figure 5.

6. Conclusion

We conclude this paper with two remarks. In the preceding, we have considered generalized
Dupin cyclides corresponding to non-negative values of C in order to be able to focus on

13
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Figure 5. A family of L-minimal generalized Dupin cyclides (87) for different values of c0.

closed generating curves and surfaces. However, the remaining case is also of interest since it
includes, for instance, particular minimal surfaces. Indeed, the condition

κ1 + κ2 = −H0

H
− K0

K
= 0 (90)

is equivalent to R = H + K = 0 and hence P = c e−θ by virtue of the Mainardi–Codazzi
equations (23). Hence, minimal generalized Dupin cyclides are associated with the symmetry
reduction θ = θ(α) of the elliptic Liouville equation (32)1. Comparison of the corresponding
general solution

e−θ = cosh(σ (α − α0))

σ
(91)

with expression (38) indeed shows that C < 0 and one obtains the catenoid given by (95) with
c0 = 0 and α and β interchanged.

It is also interesting to note that even though not all minimal surfaces with planar lines
of curvature are generalized Dupin cyclides, the latter surfaces may be mapped to all minimal
surfaces with planar lines of curvature in the following sense. In section 3.1, it has been
demonstrated that L-isothermic surfaces are encoded in the pair of linear equations

Hβ = θβK, Kα = θαH, (92)

where θ is a solution of the elliptic Liouville equation (21)3. Indeed, any solution H,K of
the above system uniquely defines (up to Euclidean motions) an L-isothermic surface with
position vector r via integration of the pair

rα = HX, rβ = KY , (93)

where the unit tangent vectors X and Y are obtained from the Gauss–Weingarten
equations (9) with H0 = K0 = eθ and p = θβ, q = θα . Since X and Y only depend
on θ , it is evident that for any specific solution θ , the corresponding L-isothermic surfaces
are, by definition, Combescure-related (see, e.g., [4]), that is they share the tangent vectors X
and Y .

A particular solution of the linear system (92) is given by

H = e−θ , K = −e−θ (94)

so that κ1 + κ2 = 0 and the corresponding surface constitutes a minimal surface. Conversely,
it is easy to verify that any minimal surface is L-isothermic. Hence, L-isothermic surfaces
may be regarded as Combescure transforms of minimal surfaces. Since the Combescure
transformation maps planar lines of curvature to planar lines of curvature, surfaces on which

14
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the lines of curvature are planar are represented by Combescure transforms of minimal surfaces
with planar lines of curvature. Accordingly, the following alternative characterization of
membranes of generalized Dupin cyclide type is obtained.

Theorem 6. Membranes on which the lines of curvature (and therefore the lines of principal
stress) are planar are the membranes which may be mapped via a Combescure transformation
to minimal surfaces with planar lines of curvature. All members of the latter class of minimal
surfaces may be generated in this way.

The classification of minimal surfaces which admit planar lines of curvature is classical
and may be found in [10]. Thus, the class of minimal surfaces which may be mapped to the
generalized Dupin cyclides (49) depends on the ratio d0 = c0/a0 and is given by

rmin =

⎛
⎜⎜⎝

√
1 − d2

0 cos α cosh β

sin α cosh β − d0α

d0 cos α sinh β − β

⎞
⎟⎟⎠ . (95)

In the case c0 = 0, the catenoid is obtained. If C = 0 then the Enneper surface

rmin = 1

6

⎛
⎜⎝

3(β2 − α2)

−α3 + 3αβ2 + 3α

β3 − 3α2β − 3β

⎞
⎟⎠ (96)

is the minimal surface corresponding to (53). Generalized Dupin cyclides for C < 0 may be
mapped to the surfaces (95) with α and β interchanged.

Appendix A

For a0 > 0, the function (79) can be represented by the infinite series (69), where

P0 = 2

π

√
w1w2

a0

(
2E(m) − K(m)

)

a2n =
√

w1w2

a0

(2n + 1)!

n!222n−1

(w2a0 − w1

w2a0 + w1

)n

2F1

(
3

2
,−1

2
, n + 1,m

)

a2n+1 = 0, bn+1 = 0

m = − (w2a0 − w1)
2

4w1w2a0

for n � 1. Here, E(x) = ∫ π/2
0 (1 − x sin2 t)1/2dt, K(x) = ∫ π/2

0 (1 − x sin2 t)−1/2dt are the
complete elliptic integrals of the first and second kinds and 2F1 is a hypergeometric function.

Appendix B

A surface which is both L-isothermic and L-minimal may be represented by

r = W − H
K

N , (B.1)
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where

W = Re

⎛
⎜⎜⎝

∫ (−m1 + (m2 − m̄2)ρ + m3ρ
2
)
F(ρ)dρ

i
∫ (

m1 + (m2 + m̄2)ρ + m3ρ
2
)
F(ρ)dρ∫ (

m2 + (m1 + m3)ρ + m̄2ρ
2
)
F(ρ)dρ

⎞
⎟⎟⎠

H
K

= −Re
∫

(m2 − (m1 − m3)ρ − m̄2ρ
2)F (ρ)dρ + μ

(B.2)

and

N = − 1

1 + ρρ̄

⎛
⎝ ρ + ρ̄

i(ρ − ρ̄)

1 − ρρ̄

⎞
⎠ (B.3)

is a normal vector to the surface (B.1). The parameters m1,m3 are real, m2 is complex and
F(ρ) is an arbitrary holomorphic function of the complex coordinate ρ. The substitution

m1 = (a0 + c0) cos α0, m2 = sin α0, m3 = (c0 − a0) cos α0,

F (ρ) = 2

(a0 + c0 + (a0 − c0)ρ2)2
(B.4)

in the latter representation produces the set of L-minimal generalized Dupin cyclides (85) up
to a rotation. The function ρ is defined in terms of curvature coordinates as

ρ = (a0 + c0) tan

(
α + iβ

2

)
, (B.5)

where β = arccosh(sec u). A derivation of the Weierstrass representation of L-isothermic
surfaces which are L-minimal is given in [28].
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